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may exert a considerable influence on the dynamic of crack propagation. 
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THE EQUATIONS OF MOTION OF CONDENSED MEDIA WITH CONTINUALLY KINETIC FRACTURE* 

A.L. NI and V.E. FORTOV 

A continual model of fracture /l, 2/ within the framework of which the 
degree of damage to the material is determined by the volume of the 
micropores or voids formed as a result of increasing tensile stresses, is 
reformulated to cover the case of viscoelastic media with finite 
deformations. As a result, equations of motion of a viscoelastic medium 
with continual fracture are proposed. In the case of a medium without 
fracture the equations are identical with the equations of motion /3-6/, 
and when the damage is small and the loading uniaxial, they reduce to the 
well-known equations /l/. The properties of certain simplest flows are 
studied using the model proposed. 

A large volume of literature exists, dealing with the rheological models of a continuous 
condensed medium, describing strength effects. A phenomenological approach to constructing 
the defining relations, including, in the limit, the hydrodynamic as well as elastic modes of 
motion of the material, which retains its contnuity, is given in /3, 7/. The problem of 
including fracture in such models has received less attention. A survey is given in /4/ of 
work done up till now dealing with this problem, and a theory of the continual fracture of 
non-linearly elastic model based on a phenomenological approach is developed. A second rank 
tensor whose properties were studied in /4/ is used as the macroscopic measure of material 
damage. By virtue of the assumptions made in /4/, it is established that the increase in the 
damage in thermo-elastic media is governed not by the kinetic equation, but by a finite 
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relation connecting the extent of the damage with the value of the deformation, entropy and 
the distributed source of the damage. Existing experimental data show that, for example, the 
cleavage in condensed material can satisfactorily described using the continual kinetic model 
of fracture, where the volume of the voids or pores formed serves as a measure of the damage 
/l/. Since this model has an obvious physical meaning, it is found to be useful for model- 
ling cleavage phenomena since it describes, in a continuous manner, the transition from a 
continuous material to a marocrack with subsequent separation of the split plate. This is 
particularly attractive when the computations are carried out using the through-count scheme. 

We shall assume that the distintegrating medium can be represented in the form of 
a matrix of continuous condensed material containing micropores. Let us consider the wave 
dynamics of such a medium. We introduce the following macroscopic variables: V, is the 
volume of the void per unit volume, p" is the natural density of condensed material and p 
is its averaged density o = o" II - V-1. Henceforth, we shall adhere to the model of mutually 
interpenetrating 
coordinates with 

We have the 
and energy: 

-a ., , , 

continua /t3, 9/ and carry out our investigation in a Cartesian system of 
basis vectors e,, e2, e,. 
following expressions in the integral laws of conservation of mass, momentum 

-&s p”dVM=-- ipoundS, -&~p”dVy+ndS 
0 

&S p”eT dVM = 
L" 

(er and e are the total specific and internal energy, o = II clK II is the stress tensor and 

u = (ur. 4, 4 is the velocity vector). The volume integrals are taken over the volume occu- 
pied by the continuous medium. 

The surface integrals must be studied in more detail. By virtue of the previous assump- 
tion concerning the structure of the material, the boundary of the element of the continuous 
medium S represents the union of the outer boundary S, and the boundaries of the micropores 

SIY lying within the volume o. The surface integrals in the equations of motion are calcu- 
lated over the union of Se, Si. 

We have, by the definition of V,,p, p", p”d.V~ = pdV, and the volume integrals reduce to 
integrals over the volume bounded by S,. 

Let us, for example, evaluate the integral on the right-hand side of the equations of 
conservation of momentum. Using Gauss's theorem we have 

s 0 0 

ondS=SVod17-{ VoV,dV 

On changing from surface to volume integrals, we assumed that (I can be continued smoothly 
into the micropores. This assumption needs special justification. For example, in the 
hydrodynamic approximation the situation in which p= 0 at the boundary with the vacuum is 
impossible. It makes sense to speak only of some mean pressure over a physically infinitesimal 
volume of the porous medium, and also assign it to the free surfaces, which is only possible 
at a low concentration of pores: V,el. On the other hand, it is clear that the equations 
can also be used in the limiting situation when the material has disintegrated and the stresses 
within it are zero. In this sense the equations are uniformly suitable. 

Transforming the surface integrals in the integral laws of conservation into volume 
integrals in the standard manner, we obtain 

apiat + vp = 0, apuiat + V (pu @J u) = (1 - V,J Veu, 

apedat + v (puer) = (1 - v,) %u 
(1) 

We write the equations of compatibilityof velocities are deformations, just as in the 
case of a continuous medium /6/ (A is the total distortion tensor) 

aAiat + (uV)A = UA; A = II Aik I( = II axi/a2k 11, u = II lJ*k I) = 
ii wh. II 

(‘4 

The Lagrangian coordinates XL (i, k =I, 2, 3) represent the coordinates of an element of 
the continuous medium in its initial configuration. 

The equations of motion should be closed with the defining relations for the stress 
tensor e and pore volume V,. 

In the case of hyperelastoplastic media it was suggested in /8/ that a should be deter- 
mined in terms of the characteristics of a continuous medium. We shall use this approach 
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below. First we consider the hyperelastic medium. In accordance with what was said above, 
we assume that the specific internal energy is a function of the entropy s and the tensor 
A" = (p/p)"aA, and, that the first law of thermodynamics holds 

& = Tds + p”-‘o: clAOA’-’ (3) 

(2’ is the temperature). The above equation and an expression for the stress tensor 0 = p0 

(ae/8A”),Ao* which follows from it, are identical with the corresponding relations for the 
continuous hyperelastic medium /5, 6/, with the total distortion tensor A replaced by the 
tensor A” introduced earlier. Of course, the choice of defining relations is not unique 
and corresponds to the choice of damageability in the form of a scalar /4/. The relation 
p" det A” = pO, where p0 is the density of the medium in the initial configuration, holds 
by virtue of the properties of the total distortion tensor. 

The volume of the voids V, increases as new pores are formed, and also by virtue of the 
motion of the material, which reflects the law of pore growth within a volume 0: dV,lat+ 
uvv, = $7. The following divergent form corresponds to this equation in the regions of 
smoothness by virtue of the equations of continuity: 

apv,Iat + vpuv, = P* (4) 

From this it follows, in particular, that the volume V, does not change. This con- 
dition has a clear physical meaning, since under an instantaneous compression of the pores are 
frozen into the medium and their volume decreases in exactly the same way as the volume of a 

continuous medium. 
Thus the divergent form (4) retains its validity in the case of discontinuous solutions. 

Expressing the volume V,, in terms of the specific volume V,' of the pores v, = PV,'. 
introduced in /l/, we obtain an equation which becomes, when Vp' <I, an equation /l/ for 
the kinetics of pore growth when $1~ = VT'. 

We obtain the following expression for the increase in entropy from Eqs.(l) and (2): 

Tdddt = --plplp (p = --It3 tr a) 

(p is the hydrostatic pressure). The condition of non-decrease in entropy imposes a restric- 
tion on the form of the functions + in the phenomenological approach used here, namely that 

the inequality -PQ>O must hold. 
This condition holds for the function specifying the kinetics of pore growth /l/, since 

the pores increase in size only under tensile stresses. In fact, the result obtained only 
states that the model used here does not contradict the second law of thermodynamics. It is 
entirely possible that the energy of fracture calculated using this model will not agree with 

the experimental results. The situation can be corrected by introducing into the energy 
equation terms /4/ connected with the formation and change of the surfaces of the microcrack 
edges and the number of microdefects. 

The equations of motion of a porous medium are, with the exception of the equation of 

continuity, non-divergent. Nevertheless, we can write for them the relations at the disconti- 

nuity in a standard manner /6/ since, as follows from the derivation of the equations, the 

terms V,VO and V,Vau represent volume sources which drop out when the integration is 
carried out over an infinitesimally small volume. With regard to the equations of compati- 
bility of deformations, they can be reduced 15, 6/ to divergent form and the conditions at 
the discontinuity for them can be reduced to the requirement that the displacements must be 
continuous. The relations at the discontinuity are written, in a system of coordinates 
attached to the shock wave, in the form /6/: 

IP&l = 0, -_i IAhil = IUklPA,i~, -_i IUil = IO& [el = ((Jill + 
oi~Z)IA~~l/(2PA 11); I, i = 1, 2, 3; k = 2, 3; If] = f' - p 

Here the direction of the x1 axis coincides with the normal to the shock wave, the 
superscripts 1 and 2 denote the parameters behind and in front of the discontinuity,. and j 
is the flux of material across the discontinuity. 

The relations given above are identical with the corresponding expressions for a con- 
tinuous medium, with the sole difference that the averaged density p is used here. The 
condition at the discontinuity for the volume of the pores IV,1 = 0 is added to them. 

In the limit of fairly strong shock waves and in the hydrodynamic approximation, the 
relations at the discontinuity become the relations for the porous medium /l/, provided that 
we assume that a continuous material I',,' = 0 is present behind the discontinuity. Within 
the framework of the model we have used, the stationary structure consisting of the bow shock 
where the pore volume does not change, and the adjacent region in which the pores are closed 
up in accordance with the function + correspond to this transition. Since -p$>O, the 
second law of thermodynamics also holds. 

Let us investigate the properties of some flows using the model used. We shall assume 
for simplicity that the hydrodynamic approximation holds. It will become clear later that 
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the passage to the general case gives rise to no difficulties. 
We shall study the structure of the shock wave in the short-wave approximation /ll/. 

Using standard techniques, we arrive at the following equations for Ulr v,: 

We can assume that q= -1liz when p>O. Such a choice ensures that the pores close 
up under compression. A stationary wave with velocity D obeys the following system of 
ordinary differential equations: 

If the porosity of the material in front of the wave is equal to I-,, integration of the 
first equation will yield 

D = ‘/pique - ‘JaaaaV&, + no 

where up and us = 2Dlmo are the velocities at --OQ and at the front. 
The above solution becomes invalid when Us<-, since D <aa, CL,< 0 and the wave 

is no longer evolutionary. In this case the structure of the flow is as follows: in the 
precursor situated in front of the wave, with an amplitude decaying with time, the material 
compacts under zero pressure to porosity V,' = mouFLlaC< V,, and then compresses in a continuous 
stationary structure governed by the formulas given above with D=a,. and porosity before 
the front of V,,‘. This statement is confirmed by numerical solutions of the non-stationary 
wave equations using the method of characteristics. 

Let us inspect the structure of the flow within the zone of fracture with cleavage. 
Clearly, during the late stage of fracture we must assume that the natural density changes 
weakly with time in every particle. Retaining the principlal terms in the equation of con- 
tinuity, we have 

PVU,ldZ, = p" (1 - v&l* = @, (5) 

We shall assume that the flow is isentropic, which is true for sufficiently weak shock 
waves. Expressing the pressure in terms of the density, we rewrite the momentum equation in 
the form 

au,lat + ~,a~,h, = --(%ypy apvh, (6) 

The quantity @, can obviously be written, under the assumptions made, in the form 

QD, = (PO - P")ir (7) 

The last formula reflects the tendency of the natural density to approach its own value 
when the pressure is zero. The qualitative regularities of the flow in the zone of dis- 
integration can be exhaustively studied assuming that the time of disintegration r is con- 
stant. In this case, eliminating pQ from (5)-(7) we arrive at the equation 

wat + u,au,h, = ~%a=u,la,q 

This equation is identified with the Burgers equation which describes wave motions of a 
viscous, heat conducting gas /ll/. We assume that the size of the fracture zone is much 
smaller than the length of the impulse. Then the boundary conditions will state that ul= %..n 

as z~-*co, where ’ .Ul, * are the velocities of the free surfaces after separation of the 

detached plate. 
We will choose, as the solution of above problem, 

with initial conditions 
the solution of the Cauchy problem 

The solution is given in /ll/, and at long time intervals it has an asymptotic form which 
is identical with the solution of the problem of a centred 
The solution has a clear physical meaning. 

rarefaction wave in an ideal gas. 

tilinear 
The particles of fractured material move alongrec- 

trajectories at constant velocities. A detailed analysis shows that the flow 
transfers into the selfsimilar mode in accordance with the rule t-V,. 
of free surfaces 

* 
v1 = LC~,~ + 0 (e-a'), i e 

In the neighbourhood 
. . they are fairly sharply localized. 
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The problem of localizing the detached plate can be 
Let us find the mass of the fracturedmaterial as t-m: 

IJpO(l-VP)di, 
u,o* 

discussed from another viewpoint. 

Here the integration is carried out for a constant value of time. With I+, we have the 
equation dVpldt = (1 - V,) 1 f, t - c-3, for the pore volume, in which the differentiation is carried 
out for a constant value of z,lt. This yields 

VP = 1 - c (g) / t, 5 = x,/t 

We note that the above analysis does not describe the initial phase of the disintegration 
where the assumptions made are invalid. The value of C(E) must be found by matching with 
the solution at the initial phase of the process of duration r. Finally we have 

From this we conclude that M tends to a constant value with time and this, in turn, 
indicates the local nature of the fracture process. We note that the flow is essentially 
non-linear. In the linear approximation the disintegration is not localized. 

Let us consider, in the hydrodynamic approximation, the situation limited to a known 
degree for the fracture model described above. We shall assume that when the tensile stresses 
acting on the particles of the medium exceed the cleavage values, the material fractures and 
ceases to resist separation. We shall describe the medium as a powder with zero pressure 
within the particles. If the density of the continuous material is equal, at the instant 
preceding the disintegration, to pl, then after disintegration, this value will be assigned 
to the average density. In order to determine the true density of disintegrated material we 
should employ some physical model. We can, for example, assume that the process is isentropic, 
or take into account the energy of disintegration. 

The motion of the power is described by a system of equations for a medium without 

pressure which has, in the one-dimensional case /12/, a triply degenerate characteristic 

dz,idt = ul, but is not hyperbolic, since it does not reduce to its characteristic form. The 
discontinuities in such a medium were studied using the model of rigid, non-interacting 
particles in /12/. In particular, if the homogeneous half-flows of the particles occupying 
the half-spaces zl>O and zl< 0, move in different directions, a particle-free region will 
form within the flow, while if they are directed against each other, the particle 
trajectories will intersect and the medium will become a two-velocity medium. Kraiko /12/ 
tried to eliminate such an ambiguity by introducing an impermeable surface of discontinuity 
possessing a finite mass, momentum and energy. 

In,the last case it seems reasonable to adopt, for the disintegrated concentrated 
material, a scheme of flow is which the shock waves move over both states and the relations 
for a porous shock adiabatic /lo/ hold on the wave. The material is continuous behind the 
shock wave, and the states behind the shock waves combine in the usual manner by virtue of 
the condition of continuity at the contact discontinuity of the pressure and velocity. The 
structure of the shock waves is disregarded when using such an approach. 

We can construct a scheme of disintegration of any discontinuity in which the 
disintegrated material lies adjacent to the continuous material. If the rate of unloading 
of the continuous material into a vacuum is greater than the velocity of the powder, there is 
no interaction. The powder moves inertially with constant velocity. In the opposite case a 
shock wave moves into the disintegrated material, and a shock or rarefaction wave into the 
continuous material. 

With slight modifiations the above discussion can be applied to a hyperelastic medium 
with a fracture. 

Let us now consider the problem of the model of a disintegrating viscoelastic medium. 
Within the framework of the relaxation model /6/ the total distortion tensor A can be rep- 
resented in the form A=A,A, where A, and AP are the elastic and plastic distortion 
tensors 15, 61, the kinetic equation for the plastic deformation A,' = @ (AL, A,,4 holds, and 
the internal energy is e= e(A,,s). Let us write the distortion tensor in the form 

A = A,"APo,A,O = @/&'.A,, A,' = @P/p)"' Ap 

and assume that e = e (AP.4. Now we have the following kinematic equation for A,,': 

A P O' = (i - Vr,)-‘/~Q, + ‘is (1 - VP)-1 A,"V,' (8) 

This, together with equations of motion, yields the following expression for the increase in 
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entropy 

T& = (l&f) a : A,WA;-‘A” (1 - Vp)-“s - (i/P’) Pv,' 

The first term on the right-hand side is positive by virtue of the demands imposed on 

@, and the second term by virtue of the reasons already listed. Thus the second law of 
thermodynamics retains its validity for the model Of a viscoelastic fracturing medium. 
Relations (1) , (2), (4) and (8) form a complete system of equations describing the motion of 
a viscoelastic medium with fracture. 

The author thanks G.I. Kane1 for useful discussions. 
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BOUNDS ON CONTROL IN THE LINEAR DYNAMIC OPTIMIZATION PROBLEM 
WITH A QUADRATIC FUNCTIONAL* 

B.N. SOKOLOV 

Some bounds of the region from whh a linear system can go in a 
prescribed time to the origin with a given value of an integral 
functional that is quadratic in control are derived. A bound on the 
required control is given. Conditions are proposed when a controller 
can be designed taking any point from a given bounded region to the 
origin in a prescribed time with control not exceeding the specified 
bound. 

The design of programmed bounded controls that take a linear system in a finite time to 
a prescribed state is considered in /l, 2/. 

Consider a linear controlled system 

z'= AZ+ bv (1) 
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